

Research Overview

Brain-Gut Regulation for IBS

What is the research behind Digestible?

Digestible takes a brain-gut approach to IBS treatment. This approach is based on decades of research supporting the idea that stress, emotions, beliefs, avoidance behaviors, and neurobiological changes play a major role in the onset and perpetuation of the syndrome.

1) IBS is a brain-gut disorder (DGBI), not just a "gut problem"

- The biopsychosocial framework explains IBS as dysregulation across the central and enteric nervous systems, with psychosocial factors (stress, early adversity, coping styles) shaping symptom onset, severity, and illness behavior.
- Neuroimaging consistently shows altered brain structure/function within pain and emotionregulation networks in IBS, supporting interventions that target central processes (threat, attention, avoidance).²

2) Stress and threat processing are causal drivers, and modifiable

- Reviews show psychological stress acutely and chronically disrupts gut physiology (sensitivity, motility, secretion, permeability) and amplifies visceral pain through HPA/autonomic pathways—mechanisms that brain-first therapies can recalibrate.³
- Early-life adversity is repeatedly linked to later IBS risk and greater symptom severity, consistent
 with a sensitized brain–gut axis that benefits from emotion- and threat-focused interventions.⁴
- Illness beliefs and avoidance behaviors (food/social/emotion/body-sensation avoidance) strongly predict quality of life in IBS; shifting perceptions and reducing avoidance improves outcomes—another Digestible emphasis. 5 14

3) Mind-body therapies improve IBS symptoms

 An updated meta-analysis of mind-body treatments for IBS found moderate-large reductions in IBS symptom severity across modalities, with no single therapy uniformly superior—supporting a pragmatic, integrative program that matches tools to patient needs.⁶

4) Cognitive-behavioral therapy (CBT), including exposure, has durable RCT evidence

- In a large multicenter RCT (n=436), primarily home-based/minimal-contact CBT produced significantly higher rates of moderate-substantial GI symptom improvement vs education, and benefits were durable to 12 months. This directly supports self-guided, structured digital programs.⁷
- Exposure-based internet CBT outperformed internet stress-management in an RCT (n=195), indicating that targeting fear/avoidance (e.g., of foods, sensations, situations) is a specific, effective mechanism—core to Digestible's design.

5) Exposure to feared foods helps reduce symptoms

- A narrative synthesis shows two seemingly opposite approaches—low-FODMAP restriction and exposure-based reintroduction—can both reduce symptoms, but restriction may raise nutritional and food-anxiety risks; graded exposure aims to restore a flexible diet and reduce GIspecific anxiety. Digestible operationalizes the exposure path.
- Mechanistic work indicates that after FODMAP (fructan) challenges, IBS symptoms correlate more with CNS pain-network activation than with purely luminal changes—again pointing to brain-gut targets alongside any dietary tactics.

6) Mindfulness & compassion skills complement CBT mechanisms

- Reviews of mindfulness-based approaches in GI populations support improvements in IBS symptoms and related distress—useful for down-shifting arousal and de-centering from gutfocused threat signals. ¹¹
- Self-compassion interventions (and related programs) reduce stress reactivity and improve painrelated outcomes in chronic pain populations; while not IBS-specific, they target shared mechanisms (catastrophizing, harsh self-criticism) relevant to IBS recovery.

7) Pain Reprocessing Therapy (PRT): evidence for central pain retraining

 In a JAMA RCT for chronic back pain, PRT yielded large, durable pain reductions vs placebo/usual care. IBS is nociplastic/central-sensitization-related; Digestible adapts PRT-style elements (somatic tracking, reappraisal, safety learning) to visceral symptoms. Evidence here is indirect but mechanistically aligned. 13

How Digestible maps features to evidence

- Psychoeducation & shifting illness perceptions → shifts catastrophic illness perceptions that drive avoidance and poor quality of life.
- CBT & Exposure tools → reduce GI-specific anxiety, dismantle avoidance (foods/places/body sensations), and produce durable symptom relief.

- Stress reduction (mindfulness, relaxation training, cognitive reframing) → targets HPA/autonomic dysregulation and central amplification of visceral pain.
- Emotion-focused work → RCT shows decreased IBS severity; addressing unprocessed emotion reduces internal tension that can fuel symptoms.
- Food-reintroduction guidance (graded exposure) → counters fear/avoidance and rebuilds flexible eating, consistent with exposure-based CBT and brain-gut mechanisms shown in FODMAP neuroimaging.

Across mechanistic reviews, neuroimaging, and multiple randomized trials, brain-directed therapies reliably reduce IBS symptoms and disability, and several have proven efficacy in internet/home-based formats, the very delivery model Digestible uses. The program's integrative approach; focused on exposure, stress regulation, emotion work, and belief change; is based on evidence which shows targeting the brain–gut loop and reducing threat and avoidance, helps symptoms improve.

<u>Learn more</u> about the research behind Digestible.

References

- 1. Tanaka Y, Kanazawa M, Fukudo S, Drossman DA. (2011). Biopsychosocial model of irritable bowel syndrome. *J Neurogastroenterol Motil*, 17(2), 131–139.
- Weaver K. R., Sherwin L. B., Walitt B., D'Eramo Melkus G., & Henderson W. A. (2016). Neuroimaging the brain–gut axis in patients with irritable bowel syndrome. World Journal of Gastroenterology, Pharmacology and Therapeutics, 7(2), 320–333. https://doi.org/10.4292/wjgpt.v7.i2.320
- 3. Qin, H.-Y. (2014). *Impact of psychological stress on irritable bowel syndrome (IBS)*. *Journal of Neurogastroenterology and Motility, 20*(4), 447–459. https://doi.org/10.5056/jnm.2014.20.4.447
- 4. Tanaka, Y., Kanazawa, M., Fukudo, S., & Drossman, D. A. (2011). Biopsychosocial model of irritable bowel syndrome. *Journal of Neurogastroenterology and Motility, 17*(2), 131–139. https://doi.org/10.5056/jnm.2011.17.2.131
- 5. Ekholm, M., Krouwels, M., & Knittle, K. (2024, February 5). Examining interactions of illness perceptions, avoidance behavior and patient status in predicting quality of life among people with irritable bowel syndrome. *Health Psychology and Behavioral Medicine*, *12*(1), Article 2311986. https://doi.org/10.1080/21642850.2024.2311986
- 6. Shah, K., Ramos-Garcia, M., Bhavsar, J., & Lehrer, P. (2020). Mind-body treatments of irritable bowel syndrome symptoms: An updated meta-analysis. *Behaviour Research and Therapy, 128*, Article 103462. https://doi.org/10.1016/j.brat.2019.103462
- 7. Lackner, J. M., Jaccard, J., Krasner, S. S., Katz, L. A., Gudleski, G. D., & Katz, P. O. (2018). Improvement in gastrointestinal symptoms after cognitive behavioral therapy for refractory irritable bowel syndrome. *Gastroenterology*, 155(2), 47–56. https://doi.org/10.1053/j.gastro.2018.03.063
- 8. Ljótsson, B., Hedman, E., Andersson, E., Hesser, H., Lindfors, P., Hursti, T., Rydh, S., Rück, C., Lindefors, N., & Andersson, G. (2011). Internet-delivered exposure-based treatment vs. stress management for irritable bowel syndrome: A randomized trial. *American Journal of Gastroenterology*, 106(8), 1481–1491. https://doi.org/10.1038/ajg.2011.139

- 9. Biesiekierski, J. R., Manning, L., Burton Murray, H., Vlaeyen, J. W. S., Ljótsson, B., & Van Oudenhove, L. (2022). Review article: Exclude or expose? The paradox of conceptually opposite treatments for irritable bowel syndrome. *Alimentary Pharmacology & Therapeutics*, *56*(4), 592–605. https://doi.org/10.1111/apt.17111
- Wu, J., Masuy, I., Biesiekierski, J. R., Fitzke, H. E., Parikh, C., Schofield, L., Shaikh, H., Bhagwanani, A., Aziz, Q., Taylor, S. A., Tack, J., & Van Oudenhove, L. (2022). Gut–brain axis dysfunction underlies FODMAP-induced symptom generation in irritable bowel syndrome. *Alimentary Pharmacology & Therapeutics*, 55(6), 670–682. https://doi.org/10.1111/apt.16812
- 11. Faria, P. H., Oliver, W. M., Bezerra, G. N., Takeda, C. F. V., Arias, S., Phelps, D., Enk, R., Linares, R., Fuenmayor, V., Meulman, J., Pinto, G. L., Shehata, D., Sayegh, C. L., Adetoye, A., Gonzalez Patiño, E., Shukla, J., & Vasquez, J. (2023). *Mindfulness-Based Interventions for Irritable Bowel Syndrome: A Systematic Review. Principles and Practice of Clinical Research*, 9(3). https://doi.org/10.21801/ppcrj.2023.93.9
- 12. Torrijos-Zarcero, M., Mediavilla, R., Rodríguez-Vega, B., Del Río-Diéguez, M., López-Álvarez, I., Rocamora-González, C., ... Palao-Tarrero, Á. (2021). Mindful Self-Compassion program for chronic pain patients: A randomized controlled trial. *European Journal of Pain*, *25*(6), 930–944. https://doi.org/10.1002/ejp.1734
- 13. Ashar, Y. K., et al. (2021). Effect of pain reprocessing therapy vs placebo and usual care for patients with chronic back pain: A randomized clinical trial. *JAMA Psychiatry, 78*(7), 1–11. https://doi.org/10.1001/jamapsychiatry.2021.0329
- 14. Thakur, E. R., Holmes, H. J., Lockhart, N. A., Carty, J. N., Ziadni, M. S., Doherty, H. K., Lackner, J. M., Schubiner, H., & Lumley, M. A. (2017). Emotional awareness and expression training improves irritable bowel syndrome: A randomized controlled trial. *Neurogastroenterology & Motility*, 29(12), e13143. https://doi.org/10.1111/nmo.13143